Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.426
1.
J Oleo Sci ; 73(4): 411-418, 2024.
Article En | MEDLINE | ID: mdl-38556276

In 2021, we published three papers related to the anti-inflammatory effects of food ingredients. The present paper reports the effects of vitamin E homologs and sweet basil powder. In these papers, we investigated whether inflammation occurs in the adipose tissue of mice fed a high-fat and high-sucrose diet for 16 weeks. Inflammatory cytokine gene expression was significantly higher in the epididymal fat of the high-fat and high-sucrose diet group than in that of the control diet group. However, the addition of α-tocopherol or δ-tocopherol to the diet could not restrain the inflammation of mice epididymal fats. Thereafter, we investigated the anti-inflammatory effects of α- and δ-tocopherols using the co-cultured cells. Consequently, we clarified that δ-tocopherol inhibited the increase in the gene expressions of inflammatory cytokines. We also examined the effect of sweet basil powder on a similar obese mice model. The final body weight in the high-fat and high-sucrose group that received sweet basil powder was significantly lower than that in the high-fat and high-sucrose diet group. Liver weights were also significantly lower in the high-fat and high-sucrose diet group that received sweet basil powder than in the high-fat and high-sucrose diet group, although adipose tissue weights were unchanged in both groups. Furthermore, sweet basil powder tended to inhibit in lipid synthesis in the mice livers. Therefore, we suggested that sweet basil powder inhibited fatty acid synthesis in mice livers, thereby suppressing liver enlargement, and resulting in body weight loss. Moreover, the gene expression of MCP-1 in the adipose tissue of mice fed a high-fat and high-sucrose diet added with sweet basil powder was significantly lower than that of mice fed a high-fat and high-sucrose diet for 12 weeks. Therefore, sweet basil powder inhibited inflammation onset in the adipose tissue of mice. Taken together, the results suggested that food ingredients, especially vitamin E homologs and sweet basil powder, have anti-inflammatory effects on mice adipose tissue and mice adipocyte-induced inflammation.


Food Ingredients , Mice , Animals , Powders , Adipocytes/metabolism , Adipose Tissue/metabolism , Inflammation/genetics , Cytokines/metabolism , Sucrose , Vitamin E/pharmacology , Vitamin E/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
2.
Free Radic Biol Med ; 215: 106-111, 2024 Mar.
Article En | MEDLINE | ID: mdl-38401827

The recent publication by Azzi and colleagues puts forth the argument that only RRR-α-tocopherol should be considered as vitamin E from a physiological point of view. They base their argument primarily on the assertion that only this form has been used to treat stark vitamin E deficiency in humans (known as AVED, or Ataxia with Vitamin E Deficiency). Azzi et al. also argue that other chemically similar molecules, such as tocopherols other than α-tocopherol and tocotrienols do not provide vitamin E activity. Azzi and colleagues are correct on this second point. An investigation into the biological activities of vitamin E, and the mechanisms behind these activities, confirms that physiological vitamin E activity is limited to certain α-tocopherol forms. However, it is also clear that these activities are not restricted only to the RRR-form but include other 2R-forms as well. Indeed, the α-tocopherol transfer protein (α-TTP), which is critical to mediate vitamin E trafficking and biological activity, and genetic defects of which lead to vitamin E deficiency, binds well to all 2R-forms of α-tocopherol. Furthermore, both RRR-α-tocopherol and the other 2R-forms are maintained in human plasma and distributed to tissues and organs, whereas the 2S-stereoisomers are excreted quickly. As such, in recent years the definition of vitamin E including both 2R- and RRR-α-tocopherol has gained both broad scientific and regulatory acceptance. Consistent with this understanding, we provide evidence that AVED has indeed been treated successfully with forms in addition to RRR-α-tocopherol, again arguing against the restriction of the definition to RRR-α-tocopherol only. Finally, we provide evidence against any safety concerns utilizing the currently accepted definition of vitamin E.


Vitamin E Deficiency , Vitamin E , Humans , Vitamin E/pharmacology , Vitamin E/metabolism , alpha-Tocopherol/pharmacology , Stereoisomerism , Antioxidants/pharmacology , Antioxidants/chemistry , Vitamin E Deficiency/drug therapy
3.
Sci Total Environ ; 922: 171219, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38408665

Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 µM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 µg/L to 64.72, 108.62 and 72.78 µg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 µg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.


Fungicides, Industrial , Water Pollutants, Chemical , Animals , Strobilurins/toxicity , Zebrafish/metabolism , Vitamin E/metabolism , Vitamin E/pharmacology , Water Pollutants, Chemical/metabolism , Oxidative Stress , Fungicides, Industrial/metabolism , Larva , Embryo, Nonmammalian
4.
Biochem J ; 481(4): 279-293, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38314636

Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.


Diphosphates , Prunus avium , Vitamin E , Vitamin E/metabolism , Fruit , Prunus avium/metabolism , Abscisic Acid/metabolism , Tocopherols/metabolism , Chlorophyll/metabolism , Phytol/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Radiat Res ; 201(5): 371-383, 2024 May 01.
Article En | MEDLINE | ID: mdl-38253059

A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.


Macaca mulatta , Metabolomics , Whole-Body Irradiation , Animals , Whole-Body Irradiation/adverse effects , Male , Metabolome/radiation effects , Vitamin E/metabolism , Vitamin E/analogs & derivatives , Radiation-Protective Agents/pharmacology , Gamma Rays/adverse effects , Chromans
6.
Pediatr Res ; 95(4): 1035-1040, 2024 Mar.
Article En | MEDLINE | ID: mdl-38040987

BACKGROUND: Spur-cell anemia sometimes accompanies cholestasis. We postulated that even in the absence of spur-cells, cholestasis might alter red blood cell (RBC) osmotic fragility and deformability. Therefore, we assessed these RBC measures by ektacytometry in pediatric patients. METHODS: We conducted a single center, prospective, cross-sectional investigation of RBC membrane characteristics by ektacytometry in pediatric patients with intra- and extrahepatic cholestasis followed at Cincinnati Children's Hospital Medical Center. We measured red cell membrane fragility and deformability in 17 patients with cholestasis and 17 age-matched controls without cholestasis. RESULTS: Patients with cholestasis had decreased RBC osmotic fragility compared to controls, with a significant left shift in Omin, indicating increased RBC surface-to-volume ratio. One showed spur cell morphology. However, the other 16 had no spurring, indicating that ektacytometry is a sensitive method to detect RBC membrane abnormalities. Left shift of Omin positively correlated with serum conjugated bilirubin levels and even more negatively with serum vitamin E concentration. CONCLUSIONS: This study suggests that subclinical red blood cell membrane abnormalities exist in most pediatric patients with cholestasis, increasing risk for hemolysis when subjected to oxidative stress. Hence minimizing pro-oxidants exposure and maximizing antioxidant exposure is advisable for this group. GOV IDENTIFIER: NCT05582447 https://clinicaltrials.gov/ct2/show/NCT05582447?cond=Cholestasis&cntry=US&state=US%3AOH&city=Cincinnati&draw=2&rank=2 . IMPACT: Spur cell anemia due to decreased red cell osmotic fragility and decreased deformability has been reported among patients with cholestasis. Ektacytometry is a reliable, reproducible method to measure red cell osmotic fragility and deformability. Few data describe red cell osmotic fragility or deformability in patients with cholestasis who may or may not have spur cell anemia. Ektacytometry shows that red cell osmotic fragility and deformability are decreased in many children with cholestasis even when spur cell anemia has not yet occurred. Factors associated with decreased osmotic fragility include elevated serum bilirubin, elevated serum bile acids, and decreased serum vitamin E.


Anemia , Cholestasis , Humans , Child , Prospective Studies , Cross-Sectional Studies , Erythrocytes , Cholestasis/diagnosis , Cholestasis/metabolism , Bilirubin/metabolism , Vitamin E/metabolism
7.
Plant Cell ; 36(4): 1140-1158, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38124486

Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.


Arabidopsis , Phosphotransferases (Alcohol Group Acceptor) , Tocopherols , Tocopherols/metabolism , Vitamin E/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Vitamin K 1/metabolism , Phytol/metabolism , Farnesol/metabolism , Plants/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Chlorophyll/metabolism
8.
Poult Sci ; 102(12): 103116, 2023 Dec.
Article En | MEDLINE | ID: mdl-37844526

One of the most intriguing areas of research and innovation in the animal production and food sector recently has been designed-enriched products. These items are regarded as functional foods because they feature components that have advantageous physiological impacts on human health. In the production of poultry, designed eggs constitute a significant category of functional foods. The present study hypothesized that adding different kinds of oils to quail diets will help produce designer eggs rich in omega-3 and 6 fatty acids in addition to enhancing productive performance. So, this study examined how linseed (flaxseed) and canola oils with various levels can affect lipid metabolism, immune function, and the amount of n-3 polyunsaturated fatty acids (n-3 PUFA) in Japanese quail eggs. This work was conducted using 3 different vegetable oils (sunflower, linseed, and canola oils) and 3 different antioxidant supplements (0, 250 mg vitamin E/kg feed, and 1,000 mg ginger/kg feed) in a 3 × 3 factorial experiment. When linseed or canola oil was added to the diet, the number of fatty acids in the egg yolks of Japanese quail layers fell by (12.7 and 18.9%) and (41.4 and 24.6%), respectively. The amounts of saturated and monounsaturated fatty acids in total eggs fell by 21.9 and 14.6% and 24.5 and 15.8%, respectively, at 20 wk of age. However, when linseed and canola oil were added to the diet, the sum n-3 PUFA content in the egg yolk of Japanese quail-laying hens was noticeably raised at 15 and 20 wk of age. At 15 and 20 wk of age, the same groups' total n-6 PUFA content considerably increased compared to the group that did not receive flaxseed. In conclusion, during the laying period of Japanese quail, linseed oil, canola oil, vitamin E, or ginger positively affected productivity, blood hematology, constituents, resistance, lipid digestion system, and antioxidative properties in serum and egg yolk.


Fatty Acids, Omega-3 , Flax , Humans , Animals , Fatty Acids, Omega-3/metabolism , Flax/metabolism , Linseed Oil/metabolism , Rapeseed Oil/metabolism , Quail/metabolism , Coturnix/metabolism , Lipid Metabolism , Chickens/physiology , Ovum/metabolism , Egg Yolk/metabolism , Diet/veterinary , Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism , Vitamin E/metabolism , Animal Feed/analysis
9.
BMC Plant Biol ; 23(1): 528, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37904113

BACKGROUND: Homogentisate phytyltransferase (HPT) is the critical enzyme for the biosynthesis of tocopherols (vitamin E), which are the major lipid-soluble antioxidants and help plants adapt to various stress conditions. HPT is generally strictly conserved in various plant genomes; however, a divergent lineage HPT2 was identified recently in some Triticeae species. The molecular function and transcriptional profiles of HPT2 remain to be characterized. RESULTS: In this study, we performed comprehensive transcriptome data mining of HPT1 and HPT2 in different tissues and stages of barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa), followed by qRT-PCR experiments on HPT1 and HPT2 in different tissues of barley and wheat. We found that the common HPT1 genes (HvHPT1, TaHPT1s, and AsHPT1s) displayed a conserved transcriptional pattern in the three target species and were universally transcribed in various tissues, with a notable preference in leaf. In contrast, HPT2 genes (HvHPT2, TaHPT2, and AsHPT2) were specifically transcribed in spike (developmentally up-regulated) and shoot apex tissues, displaying a divergent tissue-specific pattern. Cis-regulatory elements prediction in the promoter region identified common factors related to light-, plant hormone-, low temperature-, drought- and defense- responses in both HPT1s and HPT2s. We observed the transcriptional up-regulation of HvHPT1 and HvHPT2 under various stress conditions, supporting their conserved function in environmental adaption. We detected a clear, relaxed selection pressure in the HPT2 lineage, consistent with the predicted evolution pattern following gene duplication. Protein structural modelling and substrate docking analyses identified putative catalytic amino acid residues for HvHPT1 and HvHPT2, which are strictly conserved and consistent with their function in vitamin E biosynthesis. CONCLUSIONS: We confirmed the presence of two lineages of HPT in Triticeae and Aveninae, including hexaploid oat, and characterized their transcriptional profiles based on transcriptome and qRT-PCR data. HPT1s were ubiquitously transcribed in various tissues, whilst HPT2s were highly expressed in specific stages and tissue. The active transcription of HPT2s, together with its conserved cis-elements and protein structural features, support HPT2s' role in tocopherol production in Triticeae. This study is the first protein structural analysis on the membrane-bound plant HPTs and provides valuable insights into its catalytic mechanism.


Hordeum , Hordeum/genetics , Hordeum/metabolism , Triticum/genetics , Triticum/metabolism , Avena/metabolism , Tocopherols/metabolism , Vitamin E/metabolism , Gene Expression Regulation, Plant
10.
Environ Geochem Health ; 45(12): 9653-9667, 2023 Dec.
Article En | MEDLINE | ID: mdl-37794280

Respiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.


Asthma , Soot , Mice , Animals , Soot/toxicity , Humidity , Capsaicin/metabolism , Asthma/chemically induced , Lung , Vitamin E/pharmacology , Vitamin E/metabolism
11.
Cell Rep ; 42(7): 112705, 2023 07 25.
Article En | MEDLINE | ID: mdl-37393618

Defects in intestinal epithelial tight junctions (TJs) allow paracellular permeation of noxious luminal antigens and are important pathogenic factors in inflammatory bowel disease (IBD). We show that alpha-tocopherylquinone (TQ), a quinone-structured oxidation product of vitamin E, consistently enhances the intestinal TJ barrier by increasing barrier-forming claudin-3 (CLDN3) and reducing channel-forming CLDN2 in Caco-2 cell monolayers (in vitro), mouse models (in vivo), and surgically resected human colons (ex vivo). TQ reduces colonic permeability and ameliorates colitis symptoms in multiple colitis models. TQ, bifunctionally, activates both aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Genetic deletion studies reveal that TQ-induced AhR activation transcriptionally increases CLDN3 via xenobiotic response element (XRE) in the CLDN3 promoter. Conversely, TQ suppresses CLDN2 expression via Nrf2-mediated STAT3 inhibition. TQ offers a naturally occurring, non-toxic intervention for enhancement of the intestinal TJ barrier and adjunct therapeutics to treat intestinal inflammation.


Claudins , Colitis , Mice , Animals , Humans , Claudins/metabolism , Caco-2 Cells , NF-E2-Related Factor 2/metabolism , Intestinal Mucosa/metabolism , Tight Junctions/metabolism , Receptors, Aryl Hydrocarbon/genetics , Colitis/metabolism , Vitamin E/metabolism , Permeability
12.
PLoS One ; 18(6): e0286726, 2023.
Article En | MEDLINE | ID: mdl-37267350

Increased uptake of fat, such as through the ingestion of high fat diet (HFD), can lead to fatty liver diseases and metabolic syndrome. It is not clear whether certain fatty acids may be more pathogenic than others to the liver. Linoleic acid (LA) is the most abundant polyunsaturated fatty acid in the Western diet and its excessive consumption can lead to increased lipid peroxidation. We hypothesized that a high level of LA in HFD will contribute significantly to the hepatic steatosis and injury, whereas vitamin E (VIT-E) may reverse the effects from LA by inhibiting lipid peroxidation. To test this hypothesis, we fed mice with the following diets for 20 weeks: a standard low-fat diet (CHOW), HFD with a low level of LA (LOW-LA, 1% of energy from LA), HFD with a high level of LA (HI-LA, 8% of energy from LA), or HI-LA diet with VIT-E supplement (HI-LA + VIT-E). We found that the HI-LA diet resulted in more body weight gain, larger adipocyte area, and higher serum levels of triglycerides (TG) and free fatty acids (FFA) relative to the CHOW and LOW-LA diets. In mice fed with the HI-LA diet, severer hepatic steatosis was seen with higher levels of hepatic TG and FFA. Expression of genes related to lipid metabolism was altered in the liver by HI-LA diet, including fibroblast growth factor 21 (Fgf21), cluster of differentiation 36 (Cd36), stearoyl-CoA desaturase 1 (Scd1), and acyl-CoA oxidase 1 (Acox1). Liver injury, inflammation and fibrotic response were all enhanced in mice fed with the HI-LA diet when compared with the LOW-LA diet. Notably, addition of VIT-E supplement, which restores the proper VIT-E/PUFA ratio, significantly reduced the detrimental effects of the high level of LA. Taken together, our results suggest that a high level of LA and a low ratio of VIT-E/PUFA in HFD can contribute significantly to metabolic abnormalities and hepatic injury.


Diet, High-Fat , Non-alcoholic Fatty Liver Disease , Mice , Animals , Diet, High-Fat/adverse effects , Linoleic Acid/metabolism , Vitamin E/metabolism , Liver/metabolism , Triglycerides , Non-alcoholic Fatty Liver Disease/pathology , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Nonesterified/metabolism , Mice, Inbred C57BL
13.
Sci Rep ; 13(1): 7392, 2023 05 06.
Article En | MEDLINE | ID: mdl-37149706

Vitamin E is classified into tocopherol (Toc) and tocotrienol (T3) based on its side chains. T3 generally has higher cellular uptake than Toc, though the responsible mechanism remains unclear. To elucidate this mechanism, we hypothesized and investigated whether serum albumin is a factor that induces such a difference in the cellular uptake of Toc and T3. Adding bovine serum albumin (BSA) to serum-depleted media increased the cellular uptake of T3 and decreased that of Toc, with varying degrees among α-, ß-, γ-, and δ-analogs. Such enhanced uptake of α-T3 was not observed when cells were incubated under low temperature (the uptake of α-Toc was also reduced), suggesting that Toc and T3 bind to albumin to form a complex that results in differential cellular uptake of vitamin E. Fluorescence quenching study confirmed that vitamin E certainly bound to BSA, and that T3 showed a higher affinity than Toc. Molecular docking further indicated that the differential binding energy of Toc or T3 to BSA is due to the Van der Waals interactions via their side chain. Overall, these results suggested that the affinity of Toc and T3 to albumin differs due to their side chains, causing the difference in their albumin-mediated cellular uptake. Our results give a better mechanistic insight into the physiological action of vitamin E.


Tocopherols , Tocotrienols , Tocopherols/pharmacology , Molecular Docking Simulation , Vitamin E/metabolism , Albumins , Serum Albumin, Bovine
14.
Nutrients ; 15(4)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36839192

The increasing burden of nonalcoholic fatty liver disease (NAFLD) requires innovative management strategies, but an effective pharmacological agent has yet to be found. Apart from weight loss and lifestyle adjustments, one isomer of the vitamin E family-alpha-tocopherol-is currently recommended for nondiabetic steatohepatitis patients. Another member of the vitamin E family, tocotrienol (T3), has anti-inflammatory and antioxidant properties that reach beyond those of alpha-tocopherol, making it a potential agent for use in NAFLD management. This systematic review aimed to provide an overview of the effects of T3 supplementation on NAFLD from both clinical and preclinical perspectives. A literature search was performed in October 2022 using PubMed, Scopus and Web of Science. Original research articles reporting NAFLD outcomes were included in this review. The search located 12 articles (8 animal studies and 4 human studies). The literature reports state that T3 isomers or natural mixtures (derived from palm or annatto) improved NAFLD outcomes (liver histology, ultrasound or liver profile). However, the improvement depended on the severity of NAFLD, study period and type of intervention (isomers/mixture of different compositions). Mechanistically, T3 improved lipid metabolism and prevented liver steatosis, and reduced mitochondrial and endoplasmic reticulum stress, inflammation and ultimately liver fibrosis. In summary, T3 could be a potential agent for use in managing NAFLD, pending more comprehensive preclinical and human studies.


Non-alcoholic Fatty Liver Disease , Tocotrienols , Animals , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Tocotrienols/metabolism , alpha-Tocopherol , Liver/metabolism , Vitamin E/metabolism
15.
Int J Pharm ; 636: 122781, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36849039

Long-term exposure to solar radiation can lead to skin damage such as photoageing, and photocarcinogenesis. This can be prevented by topically applying α-tocopherol phosphate (α-TP). The major challenge is that a significant amount of α-TP needs to reach viable skin layers for effective photoprotection. This study aims to develop candidate formulations of α-TP (gel-like, solution, lotion, and gel), and investigate formulation characteristics' effect on membrane diffusion and human skin permeation. All the formulations developed in the study had an appealing appearance and no signs of separation. All formulations had low viscosity and high spreadability except the gel. The flux of α-TP through the polyethersulfone membrane was the highest for lotion (6.63 ±â€¯0.86 mg/cm2/h), followed by control gel-like (6.14 ±â€¯1.76 mg/cm2/h), solution (4.65 ±â€¯0.86 mg/cm2/h), and gel (1.02 ±â€¯0.22 mg/cm2/h). The flux of α-TP through the human skin membrane was numerically higher for lotion compared to the gel-like (328.6 vs.175.2 µg/cm2/h). The lotion delivered 3-fold and 5-fold higher α-TP in viable skin layers at 3 h and 24 h, respectively, compared to that of the gel-like. The low skin membrane penetration rate and deposition of α-TP in viable skin layers were observed for the solution and gel. Our study demonstrated that dermal penetration of α-TP was influenced by characteristics of formulation such as formulation type, pH, and viscosity. The α-TP in the lotion scavenged higher DPPH free radicals compared to that of gel-like (almost 73% vs. 46%). The IC50 of α-TP in lotion was significantly lower than that of gel-like (397.2 vs. 626.0 µg/mL). The preservative challenge test specifications were fulfilled by Geogard 221 and suggested that the combination of benzyl alcohol and Dehydroacetic Acid effectively preserved 2% α-TP lotion. This result confirms the suitability of the α-TP cosmeceutical lotion formulation employed in the present work for effective photoprotection.


Cosmeceuticals , Vitamin E , Humans , Vitamin E/metabolism , Skin Absorption , Phosphates/metabolism , Skin/metabolism , Emollients , Administration, Cutaneous
16.
ACS Chem Neurosci ; 14(4): 657-666, 2023 02 15.
Article En | MEDLINE | ID: mdl-36728544

Alzheimer's disease is characterized by the presence in the brain of amyloid plaques formed by the aberrant deposition of the amyloid-ß peptide (Aß). Since many vitamins are dysregulated in this disease, we explored whether these molecules contribute to the protein homeostasis system by modulating Aß aggregation. By screening 18 fat-soluble and water-soluble vitamin metabolites, we found that retinoic acid and α-tocopherol, two metabolites of vitamin A and vitamin E, respectively, affect Aß aggregation both in vitro and in a Caenorhabditis elegans model of Aß toxicity. We then show that the effects of these two vitamin metabolites in specific combinations cancel each other out, consistent with the "resilience in complexity" hypothesis, according to which the complex composition of the cellular environment could have an overall protective role against protein aggregation through the simultaneous presence of aggregation promoters and inhibitors. Taken together, these results indicate that vitamins can be added to the list of components of the protein homeostasis system that regulate protein aggregation.


Alzheimer Disease , Vitamin A , Animals , Vitamin E/pharmacology , Vitamin E/metabolism , Protein Aggregates , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Vitamins/pharmacology , Vitamins/metabolism , Vitamin K/metabolism , Caenorhabditis elegans
17.
Plant Physiol ; 192(1): 504-526, 2023 05 02.
Article En | MEDLINE | ID: mdl-36493393

Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellular variable region (IRT1vr) that acts as a regulatory protein interaction platform. Here, we describe that IRT1vr interacted with peripheral plasma membrane SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN2 (PATL2). SEC14 proteins bind lipophilic substrates and transport or present them at the membrane. To date, no direct roles have been attributed to SEC14 proteins in Fe import. PATL2 affected root Fe acquisition responses, interacted with ROS response proteins in roots, and alleviated root lipid peroxidation. PATL2 had high affinity in vitro for the major lipophilic antioxidant vitamin E compound α-tocopherol. Molecular dynamics simulations provided insight into energetic constraints and the orientation and stability of the PATL2-ligand interaction in atomic detail. Hence, this work highlights a compelling mechanism connecting vitamin E with root metal ion transport at the plasma membrane with the participation of an IRT1-interacting and α-tocopherol-binding SEC14 protein.


Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Vitamin E/metabolism , alpha-Tocopherol , Biological Transport , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
18.
Transfus Clin Biol ; 30(1): 87-95, 2023 Feb.
Article En | MEDLINE | ID: mdl-36084917

OBJECTIVES: Erythrocytes are exposed to oxidative stress during storage and can be stored for up to 42 days (in AS-7) under blood bank conditions for transfusion. Vitamin-C and Vitamin-E have proved beneficial in diminishing oxidative stress. Therefore, this study aims to investigate the combined effects of Vitamin-C and Vitamin-E on erythrocytes during storage. MATERIALS AND METHODS: Blood was collected from male Wistar rats and erythrocytes were isolated and stored in AS-7 (Additive Solution) at 4 °C for 35 days. Erythrocytes were grouped into i) Controls and ii) Experimentals [Vitamin-C (10 mM) and Vitamin-E (2 mM)]. Antioxidant and oxidative stress markers were assessed at weekly intervals. Statistical analyses were performed by using GraphPad Prism software. RESULTS: Hemoglobin increased on days 7 and 14 in the Experimentals. Superoxide dismutase activity elevated on days 7 & 14 in Controls and on day 7 in Experimentals. Catalase activity increased on day 21 in both groups. Protein carbonyls decreased on days 21 and 28 in Experimentals. Thiobarbituric acid reactive substances decreased from day 14 in both groups. Conjugate dienes decreased on days 21 & 35 in the Experimentals. Glutathione increased from day 14 in both groups. Superoxides decreased on days 14, 28 & 35 in Controls and from day 14 in Experimentals. CONCLUSION: Vitamin-C and Vitamin-E have been beneficial in terms of hemoglobin, antioxidants, protein & lipid oxidations and superoxides in stored erythrocytes. Therefore, this study provides new avenues for the development of effective storage solutions which will have a clinical impact in erythrocyte transfusions.


Ascorbic Acid , Vitamin E , Rats , Animals , Male , Humans , Vitamin E/pharmacology , Vitamin E/metabolism , Ascorbic Acid/pharmacology , Superoxides/metabolism , Superoxides/pharmacology , Catalase/metabolism , Catalase/pharmacology , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/metabolism , Erythrocytes , Vitamins/pharmacology , Vitamins/metabolism
19.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article En | MEDLINE | ID: mdl-36555573

Rapeseed (Brassica napus L.) is an important oil crop and a major source of tocopherols, also known as vitamin E, in human nutrition. Enhancing the quality and composition of fatty acids (FAs) and tocopherols in seeds has long been a target for rapeseed breeding. The gene γ-Tocopherol methyltransferase (γ-TMT) encodes an enzyme catalysing the conversion of γ-tocopherol to α-tocopherol, which has the highest biological activity. However, the genetic basis of γ-TMT in B. napus seeds remains unclear. In the present study, BnaC02.TMT.a, one paralogue of Brassica napus γ-TMT, was isolated from the B. napus cultivar "Zhongshuang11" by nested PCR, and two homozygous transgenic overexpression lines were further characterised. Our results demonstrated that the overexpression of BnaC02.TMT.a mediated an increase in the α- and total tocopherol content in transgenic B. napus seeds. Interestingly, the FA composition was also altered in the transgenic plants; a reduction in the levels of oleic acid and an increase in the levels of linoleic acid and linolenic acid were observed. Consistently, BnaC02.TMT.a promoted the expression of BnFAD2 and BnFAD3, which are involved in the biosynthesis of polyunsaturated fatty acids during seed development. In addition, BnaC02.TMT.a enhanced the tolerance to salt stress by scavenging reactive oxygen species (ROS) during seed germination in B. napus. Our results suggest that BnaC02.TMT.a could affect the tocopherol content and FA composition and play a positive role in regulating the rapeseed response to salt stress by modulating the ROS scavenging system. This study broadens our understanding of the function of the Bnγ-TMT gene and provides a novel strategy for genetic engineering in rapeseed breeding.


Brassica napus , Brassica rapa , alpha-Tocopherol/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Brassica rapa/genetics , Fatty Acids/metabolism , Germination , Plant Breeding , Reactive Oxygen Species/metabolism , Salt Stress , Seeds/metabolism , Tocopherols/metabolism , Vitamin E/metabolism
20.
Int J Mol Sci ; 23(23)2022 Dec 04.
Article En | MEDLINE | ID: mdl-36499631

Autophagy and apoptosis are two important regulatory mechanisms for how the body can respond to diseases. This study was designed to investigate the protective actions of vitamin E (Vit-E) and lactobacillus plantarum (Lac-B) against mercuric chloride (HgCl2)-induced kidney injury. Thirty albino rats were divided into five groups: group 1 served as the normal group; rats in group 2 received high doses of HgCl2; rats in groups 3, 4 and 5 were given Vit-E, Lac-B and the combination of Vit-E and Lac-B, respectively along with HgCl2 for two weeks. HgCl2 provoked renal injury, manifested by elevation in serum urea, urea nitrogen and creatinine. Kidney levels of oxidative stress and inflammation were markedly increased post HgCl2 administration. Moreover, HgCl2 significantly elevated the gene expression levels of VCAM-1 and cystatin C, while podocin was downregulated. Additionally, it markedly decreased the protein expression of Beclin-1 and Bcl-2. Histopathological examination revealed massive degeneration with congested blood vessels following HgCl2 administration. Treatment with Vit-E or/and Lac-B restored the normal levels of the previously mentioned parameters, as well as improved the morphology of kidney tissues. Both Vit-E and Lac-B provided a protective effect against HgCl2-induced kidney damage by regulating autophagy and apoptosis.


Lactobacillus plantarum , Vitamin E , Rats , Antioxidants/pharmacology , Apoptosis , Autophagy , Beclin-1/metabolism , Kidney/metabolism , Lactobacillus plantarum/metabolism , Mercuric Chloride/toxicity , Oxidative Stress , Urea/pharmacology , Vitamin E/pharmacology , Vitamin E/metabolism , Animals
...